Применение электролиза

Электролиз находит весьма широкое применение в технике.

Электролизом получают некоторые металлы; многие металлы, полученные неэлектрическим методом, очищают от примесей. Электролизом соответствующих растворов получают кислород, водород, хлор, «тяжелую воду». Посредством электролиза различные изделия покрывают слоем металла, а также изготавливают рельефные металлические копии нужных изделий.

На электролизе основана зарядка аккумуляторов. Каждое из возможных применений электролиза получило свое название. Рассмотрим сущность некоторых из применений электролиза в технике.

Гальванопластика– получение металлических отпечатков рельефных предметов (медалей, монет и т. п.).

Для этого с предмета сначала снимают слепок из воска (стеарина), покрывают поверхность слепка порошкообразным графитом для придания электропроводности и затем используют слепок в качестве катода в электролитической ванне, содержащей растворенную соль металла. При электролизе металл электролита выделяется на поверхности слепка и образует металлическую копию предмета. Этим способом, в частности, изготавливают типографские клише, бесшовные трубы, а также другие металлические детали сложной формы.

Гальваностегия.Электролитическое осаждение металлов широко используется для покрытия металлических предметов слоем благородных металлов или защитным слоем другого металла, обладающего механической прочностью и устойчивостью к коррозии. Таково электролитическое серебрение, золочение и платинирование, покрытие хромом и никелем, электролитическое покрытие железа цинком.

Очистка (рафинирование) металлов (получение чистых металлов).Для этого очищаемый металл отливают в виде пластин, и делают их анодом в электролитической ванне.

Электролитом служит раствор соли данного металла. При правильном выборе напряжения между анодом и катодом добиваются того, чтобы только очищаемый металл переходил с анода в раствор и выделялся на катоде. Примеси выпадают на дно электролитической ванны в виде осадка (анодный шлам).

Очисткой путем электролиза получают, например, очень чистую (так называемую электролитическую рафинированную) медь, широко применяемую в электротехнике.

Электрометаллургия.В настоящее время многие металлы получают с помощью электролиза руд в расплавленном состоянии. Примером может служить получение алюминия. Электролизу подвергают расплав смеси глинозема Al2O3и криолита Na2AlF6.

Анодами служат опускаемые в расплав угольные стержни. Электролиз производится при температуре около 900 oC, причем высокая температура поддерживается самим током. Электролизом получают также натрий, магний, бериллий, фтор и другие элементы.

Электролитическое травление и полировка.Помещая металлические предметы в электролитическую ванну в качестве анода, можно заставить металл растворяться. При наличии шероховатостей у поверхности электролитическое растворение происходит быстрее у выступов и заострений, так как напряженность электрического поля, а следовательно, и плотность тока возле них больше. Поэтому с помощью электролиза можно производить травление и полировку поверхностей.

Электролитические конденсаторы.На явлении электролиза основано действие так называемых электролитических конденсаторов («электролитов»), широко применяемых в современной электротехнике и радиотехнике. Они имеют два алюминиевых электрода, находящихся в электролите.

Состав электролита может быть разным, например из смеси борной кислоты и раствора аммиака с добавлением глицерина. Электролит часто изготовляют в виде густой пасты и пропитывают им бумажную прокладку, находящуюся между электродами. Работу электролитического конденсатора можно представить так: положительный полюс конденсатора покрыт тончайшим слоем окислов алюминия, который поддерживается вследствие электролиза.

Этот слой является диэлектриком конденсатора, а обкладками служат алюминиевый электрод и электролит. Второй алюминиевый электрод является пассивным и служит только для включения конденсатора в цепь. Благодаря малой толщине слоя окислов емкость электролитических конденсаторов достигает многих сотен микрофарад на м2площади пластин.

Электролитический конденсатор обладает большой емкостью только при определенной полярности напряжения, а именно в том случае, когда окисленный электрод соединен с положительным полюсом источника. При обратном включении в цепь изолирующий слой исчезает и через конденсатор проходит большой ток, разрушающий его.

Недостатками электролитических конденсаторов являются сравнительно большие утечки, необходимость соблюдать полярность, малая величина пробойных напряжений и невозможность использования их в цепях переменного тока.

Электролиз и так называемая электролитическая поляризацияполучили важное техническое применение в аккумуляторах, или, иначе, вторичных источниках тока (элементах). Они представляют собой гальванические элементы, в которых вещества, предварительно накопленные на электродах в процессе электролиза (в процессе зарядки аккумулятора), расходуются при отборе тока.

Наибольшее распространение получили свинцовые, или кислотные, аккумуляторы. В простейшем виде они состоят из двух свинцовых электродов, находящихся в растворе серной кислоты. При погружении в кислоту на электродах образуется сернокислый свинец PbSO4, и раствор насыщается этой же солью.

При зарядке аккумулятора на его электроде, соединенном с положительным полюсом источника тока, свинец окисляется в перекись PbO2, а второй электрод превращается в чистый свинец. При зарядке аккумулятора появляются дополнительные молекулы кислоты, поэтому концентрация кислоты увеличивается.

При разрядке аккумулятора его положительный полюс постепенно раскисляется, и на нем происходит вновь образование сернокислого свинца, который появляется также и на отрицательном электроде. При разрядке концентрация кислоты уменьшается.

Аккумуляторы характеризуются, помимо ЭДС, емкостью, т.

е. величиной заряда, отдаваемого при разрядке. Она измеряется в ампер-часах и, очевидно, тем больше, чем больше поверхность электродов.

Для увеличения емкости электроды аккумуляторов отливают в виде пластин с многочисленными ячейками наподобие пчелиных сотов и в ячейки запрессовывают окислы свинца.

Наряду со свинцовыми аккумуляторами в настоящее время применяют железоникелевые, или щелочные, аккумуляторы, которые отличаются меньшей массой при равной емкости. Они имеют один электрод из железа, а другой – из никеля, а электролитом служит 20-процентный раствор едкого калия KOH. В заряженном состоянии анодом у этих аккумуляторов служит гидрат окиси никеля Ni(OH)3, а катодом – железо.

Доклад ученицы 10 кл. «Б»

школы 1257

Масоловой Елены по теме:

Применение электролиза.

Сущность электролиза.

Электролиз— это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролитов.

Для осуществления электролиза к отрицательному полюсу внешнего источника постоянного тока присоединяют катод, а к положительному полюсу — анод, после чего погружают их в электролизер с раствором или расплавом электролита.

Электроды, как правило, бывают металлические, но применяются и неметаллические, например графитовые (проводящие ток).

На поверхности электрода, подключенного к отрицательному полюсу источника постоянного тока (катоде), ионы, молекулы или атомы присоединяют электроны, т.

е. протекает реакция электрохимического восстановления. На положительном электроде (аноде) происходит отдача электронов, т.

е. реакция окисления. Таким образом, сущность электролиза состоит в том, что на катоде происходит процесс восстановления, а на аноде — процесс окисления.

В результате электролиза на электродах (катоде и аноде) выделяются соответствующие продукты восстановления и окисления, которые в зависимости от условий могут вступать в реакции с растворителем, материалом электрода и т. п., — так называемые вторичные процессы.

Металлические аноды могут быть: а) нерастворимыми или инертными (Pt, Au, Ir, графит или уголь и др.), при электролизе они служат лишь передатчиками электронов; б) растворимыми (активными); при электролизе они окисляются.

В растворах и расплавах различных электролитов имеются разноименные по знаку ионы, т. е.

катионы и анионы, которые находятся в хаотическом движении. Но если в такой расплав электролита, например расплав хлорида натрия NaCl, опустить электроды и пропускать постоянный электрический ток, то катионы Na+будут двигаться к катоду, а анионы Cl–— к аноду. На катодеэлектролизера происходит процесс восстановления катионов Na+электронами внешнего источника тока:

Na++ e–= Na0

На анодеидет процесс окисления анионов хлора, причем отрыв избыточных электронов от Cl–осуществляется за счет энергии внешнего источника тока:

Cl–– e–= Cl0

Выделяющиеся электронейтральные атомы хлора соединяются между собой, образуя молекулярный хлор: Cl + Cl = Cl2, который и выделяется на аноде.

Суммарное уравнение электролиза расплава хлорида натрия:

2NaCl —> 2Na++ 2Cl–—электролиз—> 2Na0+ Cl20

Окислительно-восстановительное действие электрического тока может быть во много раз сильнее действия химических окислителей и восстановителей. Меняя напряжение на электродах, можно создать почти любой силы окислители и восстановители, которыми являются электроды электролитической ванны или электролизера.

Известно, что ни один самый сильный химический окислитель не может отнять у фторид-иона F–его электрон. Но это осуществимо при электролизе, например, расплава соли NaF. В этом случае на катоде(восстановитель) выделяется из ионного состояния металлический натрий или кальций:

Na++ e–= Na0

на аноде(окислитель) выделяется ион фтора F–, переходя из отрицательного иона в свободное состояние:

F–– e–= F0 ; F0+ F0= F20

-Продукты, выделяющиеся на электродах, могут вступать между собой в химическое взаимодействие, поэтому анодное и катодное пространство разделяют диафрагмой.

Практическое применение электролиза.

Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии,биохимиии т. д.

В химической промышленностиэлектролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.).

Электролиз в гидрометаллургииявляется одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов. Электролиз может осуществляться с растворимыми анодами — процесс электрорафинирования или с нерастворимыми — процесс электроэкстракции.

Главной задачей при электрорафинировании металлов является обеспечения необходимой чистоты катодного металла при приемлемых энергетических расходах.

В цветной металлургии электролиз используется для извлечения металловиз руд и их очистки. Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др.

Для рафинирования (очистки)металла электролизом из него отливают пластины и помещают их в качестве анодов в электролизер. При пропускании тока металл, подлежащий очистке, подвергается анодному растворению, т. е.

переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми, либо переходят в электролит и удаляются.

Гальванотехника– область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника пожразделяется на гальваностегию и гальванопластику.

¨ Гальваностегия(от греч. покрывать) – это электроосаждение на поверхность металла другого металла, который прочно связывается (сцепляется) с покрываемым металлом (предметом), служащим катодом электролизера.

Перед покрытием изделия необходимо его поверхность тщательно очистить (обезжирить и протравить), в противном случае металл будет осаждаться неравномерно, а кроме того, сцепление (связь) металла покрытия с поверхностью изделия будет непрочной. Способом гальваностегии можно покрыть деталь тонким слоем золота или серебра, хрома или никеля.

С помощью электролиза можно наносить тончайшие металлические покрытия на различных металлических поверхностях. При таком способе нанесения покрытий, деталь используют в качестве катода, помещенного в раствор соли того металла, покрытие из которого необходимо получить. В качестве анода используется пластинка из того же металла.

¨ Гальванопластика– получение путем электролиза точных, легко отделяемых металлических копий относительно значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами.

С помощью гальванопластики изготовляют бюсты, статуи и т. д.

Гальванопластика используется для нанесения сравнительно толстых металлических покрытий на другие металлы (например, образование «накладного» слоя никеля, серебра, золота и т. д.).

Кроме указанных выше, электролиз нашел применение и в других областях:

-получение оксидных защитных пленокна металлах (анодирование);

-электрохимическая обработка поверхности металлического изделия (полировка);

-электрохимическое окрашиваниеметаллов (например, меди, латуни, цинка, хрома и др.);

-очистка воды– удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);

-электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

Электрохимическиепроцессы широко применяются в различныхобластяхсовременнойтехникиитехнологии. С использованиемэлект-ролиза в промышленных масштабахполучают хлор и фтор, щело- чи,хлораты и перхлораты, химически чистыеводород и кислород и т.д.

В цветной металлургииэлектролиз используется для извлеченияметаллов из руд.

Электролизомрасплавленных сред получают алюминий,магний, титан, цирконий, уран, бериллийи другие металлы. Для очистки металловиспользуютэлектрохимическоерафинирование.Для рафинирования(очистки) металла электролизом из негоотливают пластины и помещают их вкачестве анодов в электролизер. Припропускании тока металл, подлежащийочистке, подвергается анодномурастворению, т.

е. переходит в раствор ввиде катионов. Затем эти катионы металларазряжаются на катоде, благодаря чемуобразуется осадок чистого металла.Примеси, находящиеся в аноде, либоостаются нерастворимыми (выпадают ввиде анодного шлама), либо переходят враствор электролита и удаляются.

Гальванотехника– область прикладной электрохимии,занимающаяся процессами нанесенияметаллических покрытий на поверхностькак металлических, так и неметаллическихизделий при прохождении постоянногоэлектрического тока через растворы ихсолей. Особо необходимо отметить значениегальванических покрытий в высокихтехнологиях (HiTec) таких, как микроструктурнаятехника, электроника и другие.Гальванотехника подразделяется нагальваностегию и гальванопластику.

Гальваностегия(от греч. покрывать) – это электроосаждениена поверхность металла другого металла,который прочно связывается с покрываемымметаллом (или специально обработаннымнеметаллическим предметом), служащимкатодом электролизера. Покрытие изделийцинком, кадмием, никелем, хромом, золотоми другими металлами придает изделиямне только красивый внешний вид, но ипредохраняет металл от коррозионногоразрушения.

Гальванопластика– получение путем электролизаточных, легко отделяемых металлическихкопий (матриц) с различных какнеметаллических, так и металлическихрельефных предметов. С помощьюгальванопластики изготовляют бюсты,статуи и т. д.

Кроме того, спомощью электролиза:

 получают защитныеи декоративные оксидные пленки наповерхности металлов (анодирование),

 осуществляютэлектрохимическую размерную обработкуметалла (электрохимическое фрезерование),

 проводят обработкуповерхности металлического изделия(электрохимическое полирование),

 осуществляютэлектрохимическое окрашивание металлов,проводят электрохимическую заточкурежущих инструментов (например,хирургических ножей, бритв и т. д.),

 наносятметаллические покрытия на изношенныеметаллические покрытия для ремонтныхцелей,

 наносят эмалевыепокрытия порошково-электростатическимметодом.

12.1. Вопросы для самоконтроля

1. Что такоеэлектролиз?

2. Какие процессыимеют место при электролизе?

3. Как устроенэлектролизер?

4. Какой зарядимеют при электролизе а) анод, б) катод?

5. К какомуэлектроду движутся при электролизекатионы?

6. Как заряженэлектрод, к которому движутся приэлектролизе анионы?

7. Какой процесспротекает при электролизе:

а) на аноде, б)на катоде?

8. Какие видыанодов используют при электролизе?

9. Какой процесспротекает при электролизе на растворимоманоде?

10. Из какихматериалов изготавливают инертные(нерастворимые) аноды?

11. Каковапоследовательность разряда ионов приэлектролизе на аноде?

12. Каковаочередность восстановления катионовпри электролизе на катоде?

13. На основаниикакого закона устанавливается зависимостьмассы вещества, образовавшегося приэлектролизе, от времени, силы тока иприроды электролита?

14. Приведитеформулировку I закона Фарадея.

15. Приведитеформулировку II закона Фарадея.

16. Какое значениеимеет постоянная Фарадея?

17. Что такоеэлектрохимический эквивалент? Какуюразмерность он имеет?

18. Как рассчитываетсяэлектрохимический эквивалент дляметаллов?

19. Как можнорассчитать значение молярной массыэквивалента металла?

20. Что такое выходпо току?

21. Назовитеобласти применения электролиза.

При прохождении через раствор или расплав электролита электрического тока, на электродах происходит выделение растворенных веществ или иных веществ, являющихся продуктами вторичных реакций на электродах. Этот физико-химический процесс и называется электролизом.

Суть электролиза

В создаваемом электродами электрическом поле, ионы в проводящей жидкости приходят в упорядоченное движение. Отрицательный электрод — это катод, положительный — анод.

К аноду устремляются отрицательные ионы, называемые анионами (ионы гидроксильной группы и кислотные остатки), а к катоду — положительные ионы, называемые катионами (ионы водорода, металлов, аммония и т. д.)

На электродах протекает окислительно-восстановительный процесс: на катоде происходит электрохимическое восстановление частиц (атомов, молекул, катионов), а на аноде — электрохимическое окисление частиц (атомов, молекул, анионов). Реакции диссоциации в электролите — это первичные реакции, а реакции, которые протекают непосредственно на электродах, называются вторичными.Законы электролиза ФарадеяРазделение реакций электролиза на первичные и вторичные помогло Майклу Фарадею установить законы электролиза:Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента.

Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.m — масса осаждённого на электроде вещества, Q — полный электрический заряд, прошедший через вещество F = 96 485,33(83) Кл·моль−1 — постоянная Фарадея, M — молярная масса вещества (Например, молярная масса воды H2O = 18 г/моль), z — валентное число ионов вещества (число электронов на один ион).Заметим, что M/z — это эквивалентная масса осаждённого вещества. Для первого закона Фарадея M, F и z являются константами, так что чем больше величина Q, тем больше будет величина m. Для второго закона Фарадея Q, F и z являются константами, так что чем больше величина M/z (эквивалентная масса), тем больше будет величина m.Электролиз широко применяется сегодня в промышленности и в технике.Например, именно электролиз служит одним из эффективнейших способов промышленного получения водорода, пероксида водорода, диоксида марганца, алюминия, натрия, магния, кальция и прочих веществ.

Применяется электролиз для очистки сточных вод, в гальваностегии, в гальванопластике, наконец — в химических источниках тока. Но обо всем по порядку.Получение чистых металлов из руд путем электролизаБлагодаря электролизу многие металлы извлекается из руд и подвергается дальнейшей переработке.Так, когда руду или обогащенную руду — концентрат — подвергают обработке реагентами, металл переходит в раствор, затем путем электроэкстракции металл выделяют из раствора. Чистый металл выделяется при этом на катоде.

Таким путем получают цинк, медь, кадмий.Электрорафинированию металлы подвергают для устранения примесей и чтобы перевести содержащиеся примеси в удобную для дальнейшей переработки форму. Металл, подлежащий очистке, отливают в виде пластин, и применяют эти пластины в качестве анодов при электролизе.Когда ток проходит, металл анода растворяется, переходит в виде катионов в раствор, затем катионы разряжаются на катоде, и образуют осадок чистого металла. Примеси анода не растворяются — выпадают анодным шламом, или переходят в электролит, откуда непрерывно или периодически удаляются.

Рассмотрим в качестве примера электрорафинирование меди.Главный компонент раствора — сульфат меди — наиболее распространенная и дешевая соль этого металла. Раствор обладает низкой электрической проводимостью.

Для ее увеличения в электролит добавляют серную кислоту.Кроме того, в раствор вводят небольшие количества добавок, способствующих получению компактного осадка металла. Вообще, электролитическому рафинированию подвергают медь, никель, свинец, олово, серебро, золото.Очистка сточных вод путем электролизаЭлектролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции и электрофлотации). Электрохимический метод очистки — один из наиболее часто применяемых.

Для электролиза используют нерастворимые аноды (магнетит, оксид свинца, графит, марганец, которые наносят на титановую основу), или растворимые (алюминий, железо).Такой метод применяют для выделения из воды токсичных органических и неорганических веществ. К примеру, медные трубы очищают от окалины раствором серной кислоты, и промышленные сточные воды приходится затем очищать путем электролиза с нерастворимым анодом. На катоде выделяется медь, которая снова может использоваться на том же предприятии.Щелочные сточные воды очищают электролизом от цианистых соединений.

С целью ускорения окисления цианидов, повышения электропроводности и экономии электроэнергии, к водам применяют добавку в виде хлорида натрия.Электролиз проводят с графитовым анодом и стальным катодом. Цианиды разрушаются в ходе электрохимического окисления и хлором, который выделяется на аноде. Результативность такой очистки близка к 100%.

Кроме непосредственно электохимической очистки можно включить в процесс электролизакоагуляцию.Исключив добавки солей, электролиз проводят с растворимыми алюминиевыми или железными анодами. Тогда не только разрушаются загрязнители на аноде, но и растворяется сам анод.

Образуются активные дисперсные соединения, которые коагулируют (сгущают) коллоидно-дисперсные загрязнения.Этот метод эффективен при очистке сточных вод от жиров, нефтепродуктов, красителей, масел, радиоактивных веществ и т. д. Он называется электрокоагуляцией.Гальваностегия

Гальваностегия — это электролитическое нанесение определенных металлов с целью защиты изделий от коррозии и для придания им соответствующего эстетического оформления (покрытие производят хромом, никелем, серебром, золотом, платиной и т. п.).

Вещь тщательно очищают, обезжиривают, и используют как катод в электролитической ванне, в которую налит раствор соли того металла, которым необходимо покрыть изделие.В качестве анода применяют пластину из этого же металла. Как правило применяют пару анодных пластин, а подлежащий гальваностегии предмет располагают между ними.ГальванопластикаГальванопластика — осаждение металла на поверхности разных тел для воспроизведения их формы: формы для отливки деталей, скульптур, печатных клише и т. д.

Гальваническое осаждение металла на поверхности предмета возможно лишь тогда, когда поверхность эта или весь предмет являются проводниками электрического тока, поэтому для изготовления моделей или форм желательно использовать металлы. Наиболее подходят для этой цели легкоплавкие металлы: свинец, олово, припои, сплав Вуда.Эти металлы мягки, легко обрабатываются слесарным инструментом, хорошо гравируются и отливаются.

После наращивания гальванического слоя и отделки металл формы выплавляют из готового изделия.Однако наибольшие возможности для изготовления моделей все же представляют диэлектрические материалы.Чтобы металлизировать такие модели, нужно придать их поверхности электропроводность. Успех или неудача в конечном итоге зависят в основном от качества токопроводящего слоя. Слой этот может быть нанесен одним из трех способов.Самый распространенный способ — графитирование, он пригоден для моделей из пластилина и других материалов, допускающих растирание графита по поверхности.Следующий прием — бронзирование, способ хорош для моделей относительно сложной формы, для разных материалов, однако за счет толщины бронзового слоя несколько искажается передача мелких деталей.И, наконец, серебрение, пригодное во всех случаях, но особенно незаменимое для хрупких моделей с очень сложной формой — растений, насекомых и т.

п.Химические источники токаТакже электролиз является основным процессом, благодаря которому функционируют самые современные химические источники тока, например батарейки и аккумуляторы. Здесь присутствуют два электрода, контактирующие с электролитом.Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Подробнее смотрите здесь: Химические источники электрического токаО том, как повторить показанное на видео смотрите здесь:Лимонная батарейка (для увеличения нажмите нажмите на картинку)

Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделённых процессов: на отрицательном аноде восстановитель окисляется, образующиеся свободные электроны переходят по внешней цепи к положительному катоду, создавая разрядный ток, где они участвуют в реакции восстановления окислителя. Таким образом, поток отрицательно заряженных электронов по внешней цепи идет от анода к катоду, то есть от отрицательного электрода к положительному.

Источники:

  • studfiles.net
  • mirznanii.com
  • studfiles.net
  • electrik.info

Поделиться:
Нет комментариев
Adblock detector