Основные сведения об электрическом сопротивлении
Физическая природа электрического сопротивления.При движении свободных электронов в проводнике они сталкиваются на своем пути с положительными ионами 2 (см. рис. 10, а), атомами и молекулами вещества, из которого выполнен проводник, и передают им часть своей энергии.
При этом энергия движущихся электронов в результате столкновения их с атомами и молекулами частично выделяется и рассеивается в виде тепла, нагревающего проводник. Ввиду того что электроны, сталкиваясь с частицами проводника, преодолевают некоторое сопротивление движению, принято говорить, что проводники обладают электрическим сопротивлением. Если сопротивление проводника мало, он сравнительно слабо нагревается током; если сопротивление велико, проводник может раскалиться.
Провода, подводящие электрический ток к электрической плитке, почти не нагреваются, так как их сопротивление мало, а спираль плитки, обладающая большим сопротивлением, раскаляется докрасна. Еще сильнее нагревается нить электрической лампы.За единицу сопротивления принят ом. Сопротивлением 1 Ом обладает проводник, по которому проходит ток 1 А при разности потенциалов на его концах (напряжении), равной 1 В.
Эталоном сопротивления 1 Ом служит столбик ртути длиной 106,3 см и площадью поперечного сечения 1 мм2 при температуре 0°С. На практике часто сопротивления измеряют тысячами ом — килоомами(кОм) или миллионами ом — мегаомами (МОм). Сопротивление обозначают буквой R ( r ).
Проводимость.Всякий проводник можно характеризовать не только его сопротивлением, но и так называемой проводимостью — способностью проводить электрический ток. Проводимость есть величина, обратная сопротивлению. Единица проводимости называется сименсом (См).
1 См равен 1/1 Ом. Проводимость обозначают буквой G (g). Следовательно,
G = 1 / R (4)
Удельное электрическое сопротивление и проводимость. Атомы разных веществ оказывают прохождению электрического тока неодинаковое сопротивление. О способности отдельных веществ проводить электрический ток можно судить по их удельному электрическому сопротивлению р.
За величину, характеризующую удельное сопротивление, обычно принимают сопротивление куба с ребром 1 м. Удельное электрическое сопротивление измеряют в Ом*м. Для суждения об электропроводности материалов пользуются также понятием удельная электрическая проводимость ?=1/?.
Удельная электрическая проводимость измеряется в сименсах на метр (См/м) (проводимость куба с ребром 1м). Часто удельное электрическое сопротивление выражают в ом-сантиметрах (Ом*см), а удельную электрическую проводимость — в сименсах на сантиметр (См/см). При этом 1 Ом*см = 10-2Ом*м, а 1 См/см = 102См/м.
Проводниковые материалы применяют, главным образом, в виде проволок, шин или лент, площадь поперечного сечения которых принято выражать в квадратных миллиметрах, а длину — в метрах.
Поэтому для удельного электрического сопротивления подобных материалов и удельной электрической проводимости введены и другие единицы измерения: ? измеряют в Ом*мм2/м (сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2), а ? — в См*м/мм2(проводимость проводника длиной 1 м и площадью поперечного сечения 1 мм2).
Из металлов наиболее высокой электропроводностью обладают серебро и медь, так как структура их атомов позволяет легко передвигаться свободным электронам, затем следует золото, хром, алюминий, марганец, вольфрам и т. д. Хуже проводят ток железо и сталь.
Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05 % примесей. И наоборот, в тех случаях, когда необходим материал с высоким сопротивлением (для различных нагревательных приборов, реостатов и пр.), применяют специальные сплавы: константан, манганин, нихром, фехраль.
Следует отметить, что в технике, кроме металлических проводников, используют и неметаллические. К таким проводникам относится, например, уголь, из которого изготовляют щетки электрических машин, электроды для прожекторов и пр.
Проводниками электрического тока являются толща земли, живые ткани растений, животных и человека. Проводят электрический ток сырое дерево и многие другие изоляционные материалы во влажном состоянии.Электрическое сопротивление проводника зависит не только от материала проводника, но и его длины l и площади поперечного сечения s. (Электрическое сопротивление подобно сопротивлению, оказываемому движению воды в трубе, которое зависит от площади сечения трубы и ее длины.)
Сопротивление прямолинейного проводника
R = ?l / s (5)
Если удельное сопротивление ? выражено в Ом*мм /м, то для того чтобы получить сопротивление проводника в омах, длину его надо подставлять в формулу (5) в метрах, а площадь поперечного сечения — в квадратных миллиметрах.
Зависимость сопротивления от температуры.Электропроводность всех материалов зависит от их температуры. В металлических проводниках при нагревании размах и скорость колебаний атомов в кристаллической решетке металла увеличиваются, вследствие чего возрастает и сопротивление, которое они оказывают потоку электронов. При охлаждении происходит обратное явление: беспорядочное колебательное движение атомов в узлах кристаллической решетки уменьшается, сопротивление их потоку электронов понижается и электропроводность проводника возрастает.
В природе, однако, имеются некоторые сплавы: фехраль, константан, манганин и др., у которых в определенном интервале температур электрическое сопротивление меняется сравнительно мало. Подобные сплавы применяют в технике для изготовления различных резисторов, используемых в электроизмерительных приборах и некоторых аппаратах для компенсации влияния температуры на их работу.
О степени изменения сопротивления проводников при изменении температуры судят по так называемому температурному коэффициенту сопротивления а.
Этот коэффициент представляет собой относительное приращение сопротивления проводника при увеличении его температуры на 1 °С. В табл. 1 приведены значения температурного коэффициента сопротивления для наиболее применяемых проводниковых материалов.
Сопротивление металлического проводника Rtпри любой температуре t
Rt= R0[ 1 + ? (t — t0) ] (6)
где R0— сопротивление проводника при некоторой начальной температуре t0(обычно при + 20 °С), которое может быть подсчитано по формуле (5);
t— t0— изменение температуры.
Свойство металлических проводников увеличивать свое сопротивление при нагревании часто используют в современной технике для измерения температуры. Например, при испытаниях тяговых двигателей после ремонта температуру нагрева их обмоток определяют измерением их сопротивления в холодном состоянии и после работы под нагрузкой в течение установленного периода (обычно в течение 1 ч).
Исследуя свойства металлов при глубоком (очень сильном) охлаждении, ученые обнаружили замечательное явление: вблизи абсолютного нуля (— 273,16 °С) некоторые металлы почти полностью утрачивают электрическое сопротивление.
Они становятся идеальными проводниками, способными длительное время пропускать ток по замкнутой цепи без всякого воздействия источника электрической энергии. Это явление названо сверхпроводимостью. В настоящее время созданы опытные образцы линий электропередачи и электрических машин, в которых используется явление сверхпроводимости.
Такие машины имеют значительно меньшие массу и габаритные размеры по сравнению с машинами общего назначения и работают с очень высоким коэффициентом полезного действия. Линии электропередачи в этом случае можно выполнить из проводов с очень малой площадью поперечного сечения. В перспективе в электротехнике будет все больше и больше использоваться это явление.
[ads-pc-2]Категория:
Электрооборудование кранов
Общие понятия об электрическом токе
Электрический ток представляет собой направленное движение электрических зарядов — электронов. Непрерывное движение электронов в замкнутой цепи от источника (генератора), вырабатывающего их, до потребителя (электродвигателей, лампочек освещения и т. д.) по проводнику (проводу), соединяющему эти элементы, называется электрическим током.
Перемещение электронов происходит под влиянием электродвижущей силы тока, которая поддерживает разность потенциалов или так называемое напряжение в различных точках цепи.
Электродвижущей силой (э.
д. с.) называется работа, затрачиваемая источником электрической энергии на перемещение электронов по замкнутой цепи. Электродвижущая сила и напряжение измеряются в вольтах (в), а сила тока — в амперах (а).
Количество работы, совершаемое током в единицу времени, выражаемое произведением напряжения (в вольтах) на силу тока (в амперах), называется электрической мощностью.
Единицей мощности является 1 ватт (вт); 1000 ватт составляют 1 киловатт (кет), который равен 1,36 лошадиной силы (л. с.) л. с.
равна 736 вт. Произведение мощности на время называется электрической работой. Работа измеряется в ватт-часах (вт-ч), киловатт-часах (квт-ч).
Для питания двигателей, установленных на башенных кранах, применяется переменный трехфазный ток. Переменным он назван потому, что непрерывно изменяется по величине и направлению. Сила тока, вырабатываемого генератором в течение короткого промежутка времени, периодически изменяется от 0 до максимальной величины и затем снова падает до 0, после чего ток меняет направление, сохраняя прежнюю закономерность изменения своей силы.
Время, за которое ток проходит полный цикл указанных изменений, называется периодом его колебания.
Число периодов в секунду называется частотой переменного тока. Единицей частоты является герц (гц). Стандартная частота переменного тока принята у нас 50 периодов в секунду.
Трехфазный переменный ток получают в специальных генераторах трехфазного тока, в которых между полюсами электромагнитов вращаются три катушки, расположенные под углом 120°. В этих катушках образуются переменные токи одинаковые по величине, но сдвинутые по фазе на 7з периода Концы обмоток катушек соединяют друг с другом в нулевую точку и вместе с началом их выводят во внешнюю цепь.
В генераторе значения тока наступают несколько позже, чем значения напряжения на некоторую часть периода, соответствующую углу ф.
Этот угол называется углом сдвига фаз. В результате сдвига фаз получаемая от генераторов мощность уменьшается на величину так называемого косинуса фи (соэф). С увеличением угла сдвига фаз соэф, а с ним и полезная (активная) мощность уменьшаются.
В этом случае часть полной мощности переменного тока является не активной, так как расходуется, например, для преобразования в механическую мощность в электродвигателях, при наличии индуктивности — на поддержание периодических изменений создаваемого током магнитного поля. Величина соэф сети зависит от индуктивности приемников, в частности электродвигателей строительных машин, станков и т. д.
Явлением индукции называется возникновение в замкнутом проводнике электрического тока при пересечении им магнитного потока, создаваемого постоянным или электрическим магнитом.
Читать далее: Электрические двигатели башенных кранов
Категория:- Электрооборудование кранов
Содержание
Главная→ Справочник → Статьи → Форум
Говоря о проводниках, мы имеем в виду материалы и вещества, относительно хорошо проводящие ток.
Однако не все вещества, называемые проводниками, одинаково хорошо проводят электрический ток, т. е. они, как говорят, обладают неодинаковой проводимостью тока.
Объясняется это тем, что при своем движении свободные электроны сталкиваются с атомами и молекулами вещества, причем в одних веществах атомы и молекулы сильнее мешают движению электронов, а в других – меньше. Говоря иными словами, одни вещества оказывают электрическому току большее сопротивление, а другие – меньшее.Формула вычисления электрического сопротивления.Из всех материалов, широко применяемых в электротехнике и радиотехнике, наименьшее сопротивление электрическому току оказывает медь. Поэтому-то электрические провода и делают чаще всего из меди.
Еще меньшее сопротивление имеет серебро, но это довольно дорогой металл. Железо, алюминий и разные металлические сплавы обладают большим сопротивлением, т. е.
худшей электропроводимостью.Сопротивление проводника зависит не только от свойств его материала, но и от размера самого проводника.Толстый проводник обладает меньшим сопротивлением, чем тонкий из такого же материала; короткий проводник имеет меньшее сопротивление, длинный – большее, так же как широкая и короткая труба оказывает меньшее препятствие движению воды, чем тонкая и длинная. Кроме того, сопротивление металлического проводника зависит от его температуры: чем ниже температура проводника, тем меньше его сопротивление.Схема измерения сопротивления методом амперметроа и вольтметра.За единицу электрического сопротивления принят ом (по имени немецкого физика Г. Ома).
Сопротивление 1 Ом – сравнительно небольшая электрическая величина. Такое сопротивление току оказывает, например, отрезок медного провода диаметром 0,15 мм и длиной 1 м. Сопротивление нити накала лампочки карманного электрического фонаря около 10 Ом, нагревательного элемента электроплитки – несколько десятков ом.
В радиотехнике чаще приходится иметь дело с большими, чем ом или несколько десятков ом, сопротивлениями. Сопротивление высокоомного телефона, например, больше 2000 Ом; сопротивление полупроводникового диода, включенного в не пропускающем ток направлении, несколько сотен тысяч ом.Знаете, какое сопротивление электрическому току оказывает ваше тело? От 1000 до 20000 Ом.
А сопротивление резисторов может быть до нескольких миллионов ом и больше. Эти детали, как вы уже знаете, на схемах обозначают в виде прямоугольников. В математических формулах сопротивление обозначают латинской буквой (R).
Такую же букву ставят и возле графических обозначений резисторов на схемах. Для выражения больших сопротивлений резисторов используют более крупные единицы: килоом (сокращенно пишут кОм), равный 1000 Ом, и мегаом (сокращенно пишут МОм), равный 1000000 Ом, или 1000 кОм.http://fazaa.ru/www.youtube.com/watch?v=q4I1hZ5YQ2wСопротивления проводников, электрических цепей, резисторов или других деталей измеряют специальными приборами, именуемыми омметрами. На схемах омметр обозначают кружком с греческой буквой омега внутри.Поделитесь полезной статьей:
Термин «удельное сопротивление» обозначает параметр, которым обладает медь или любой другой металл, и довольно часто встречается в специальной литературе. Стоит разобраться, что понимается под этим.
Одна из разновидностей медного кабеля
Общие сведения об электрическом сопротивлении
Для начала следует рассмотреть понятие электрического сопротивления.
Как известно, под действием электрического тока на проводник (а медь является одним из лучших металлов-проводников) часть электронов в нем покидают свое место в кристаллической решетке и устремляются по направлению к положительному полюсу проводника. Однако не все электроны покидают кристаллическую решетку, часть из них остаются в ней и продолжают совершать вращательное движение вокруг ядра атома. Вот эти электроны, а также атомы, расположенные в узлах кристаллической решетки, и создают электрическое сопротивление, препятствующее продвижению высвободившихся частиц.
Данный процесс, который мы вкратце обрисовали, характерен для любого металла, для меди в том числе. Естественно, что различные металлы, у каждого из которых особая форма и размеры кристаллической решетки, сопротивляются продвижению по ним электрического тока по-разному. Как раз эти различия и характеризует удельное сопротивление – показатель, индивидуальный для каждого металла.
Удельное электрическое сопротивление некоторых веществ
Применение меди в электрических и электронных системах
Для того чтобы понять, причину популярности меди как материала для изготовления элементов электрических и электронных систем, достаточно посмотреть в таблице значение ее удельного сопротивления. У меди данный параметр равен 0,0175 Ом*мм2/метр. В этом отношении медь уступает только серебру.
Именно низкое удельное сопротивление, измеряемое при температуре 20 градусов Цельсия, является основной причиной того, что без меди сегодня не обходится практически ни одно электронное и электротехническое устройство. Медь – это основной материал для производства проводов и кабелей, печатных плат, электродвигателей и деталей силовых трансформаторов.
Низкое удельное сопротивление, которым характеризуется медь, позволяет использовать ее для изготовления электротехнических устройств, отличающихся высокими энергосберегающими свойствами. Кроме того, температура проводников из меди повышается очень незначительно при прохождении через них электрического тока.
Зависимость сопротивления меди от температуры
Что влияет на величину удельного сопротивления?
Важно знать, что существует зависимость величины удельного сопротивления от химической чистоты металла. При содержании в меди даже незначительного количества алюминия (0,02%) величина этого ее параметра может значительно возрасти (до 10%).
Влияет на этот коэффициент и температура проводника. Объясняется это тем, что при повышении температуры усиливаются колебания атомов металла в узлах его кристаллической решетки, что и приводит к тому, что коэффициент удельного сопротивления возрастает.
Именно поэтому во всех справочных таблицах значение данного параметра приведено с учетом температуры 20 градусов.
Как рассчитать общее сопротивление проводника?
Знать, чему равно удельное сопротивление, важно для того, чтобы проводить предварительные расчеты параметров электротехнического оборудования при его проектировании. В таких случаях определяют общее сопротивление проводников проектируемого устройства, обладающих определенными размерами и формой. Посмотрев значение удельного сопротивления проводника по справочной таблице, определив его размеры и площадь поперечного сечения, можно рассчитать величину его общего сопротивления по формуле:
R = p*l/S
В данной формуле используются следующие обозначения:
-
R — общее сопротивление проводника, которое и необходимо определить;p — удельное сопротивление металла, из которого изготовлен проводник (определяют по таблице);l — длина проводника;S — площадь его поперечного сечения.
Влияние примесей на удельное сопротивление меди
Источники:
- electrono.ru
- stroy-technics.ru
- fazaa.ru
- met-all.org